### Average speed:

## Type 1: When speed and distances are given.

### Case a: When unequal portion of distances are travelled at varying speeds:

### a<sub>1</sub>: When each of values of distance portions are given:

Average speed = (Total distance /Total time taken)

When a vehicle travels a certain distance  $d_1$  km at a speed of  $S_1$ km/hr and a certain distance  $d_2$  km at a speed of  $S_2$  km/hr, the average speed is given by,

$$S = (d_1+d_2)/((d_1/S_1) + (d_2/S_2))....(1)$$

**Example:** When a car travels first 60km at the rate of 40km/hr and the next 80km at the rate of 70km/hr. What is its average speed?

In this case, we will directly apply equation (1).

Hence, average speed, S = (60+80)/((60/40)+(80/70))=1960/37=52.973km/hr.

# a<sub>2</sub>: When all different distance portions are expressed as a distance ratio of a single portion:

When a vehicle travels a certain distance  $d_1$  km at a speed of  $S_1$  km/hr and another distance  $(x*d_1)$  at a speed of  $S_2$  km/hr, the average speed is given by,

$$S = (d_1+(x*d_1))/((d_1/S_1)+((x*d_1)/S_2))$$

$$= ((1+x)(S_1*S_2))/(S_2+(x*S_1)).....(2).$$

**Example:** When a car travels a certain distance at 50 km/hr and (1/3) of the initial distance at 90 km/hr, what is its average speed?

Its average speed S=((1+(1/3))(50\*90))/(90+((1/3)\*50)) (applying equation 2).

= 56.25 km/hr.

#### Case b: When equal fractions of distances are travelled at varying speeds:

When the vehicle travels (1/2) of the distance at a speed of  $S_1$  km/hr and the remaining (1/2) of the distance at a speed of  $S_2$  km/hr,

equation (1) becomes  $2d_1/((d_1/S_1)+(d_1/S_2))$ 

$$= (2*S_1*S_2)/(S_1+S_2)....(3)$$

Similarly, when the vehicle travels (1/3) of the distance at a speed of  $S_1$  km/hr, second and third (1/3) of the distances at speeds  $S_2$  and  $S_3$  km/hr respectively,

Average speed = 
$$(3*S_1*S_2*S_3)/((S_1*S_2)+(S_2*S_3)+(S_3*S_1))....(4)$$

In general, when a vehicle travels (1/N) of the distance at a speed of  $S_1$  m/hr and the subsequent

(N-1) fractions each of a distance of (1/N) at varying speeds of S<sub>2</sub>,S<sub>3</sub>,S<sub>4</sub> .....S<sub>N</sub> km/hr

respectively,

Average speed=  $(N*S_1*S_2*S_3*.....S_N)/((S_1*S_2*S_3*S_4....S_{N-1})+(S_2*S_3*S_4*....S_N)+(Sum of similar sequence of (N-2) terms)).$ 

**Example:** When a vehicle travels first 100 km at a speed of 60 km/hr and the next 100 km at a speed of 80 km/hr,

Its average speed = (2\*60\*80)/(60+80) = 68.57 km/hr (by applying equation 3).

# Type 2: When speed and time are given:

### Case a: When ,for unequal time periods, varying speeds are encountered:

### a<sub>1</sub>: when the value of each of the time periods are specified:

When a vehicle travels at a speed of  $S_1$  km/hr for a time period of  $t_1$  hours and at a speed of  $S_2$  km/hr for a time period of  $t_2$  hours,

Average speed, 
$$S = ((t_1*S_1)+(t_2*S_2))/(t_1+t_2)....(5)$$
.

**Example:** When a car travels first 4 hours at a speed of 70 km/hr and the next 1.5 hours at a speed of 100 km/hr, what is its average speed?

Its average speed S=((4\*70)+(1.5\*100))/(4+1.5) (applying equation 5).

= 78.1818 km/hr.

### a<sub>2</sub>: When all different time periods are expressed as a ratio of single time period:

When a vehicle travels at a speed of  $S_1$  km/hr for a time period of  $t_1$  hours and at a speed of  $s_2$  km/hr for a time period of ( $s_1$ ) hours,

Average speed, 
$$S = ((t_1*S_1)+((x*t_1)*S_2))/(t_1+(x*t_1))$$

$$=(S_1+(x*S_2))/(1+x)....(6)$$

**Example:** When a car travels at a speed of 40 km/hr for a certain time period and at a speed of 60 km/hr for half the initial time period, what is its average speed?

Its average speed, S=(40+(0.5\*60))/1.5 (applying equation 6).

= 46.66 km/hr.

### Case b: When, for equal time periods, varying speeds are encountered:

When a vehicle travels for first  $t_1$  hours at a speed of  $S_1$  km/hr and the next  $t_1$  hours at a speed of  $S_2$  km/hr,

Average speed, 
$$S=((t_1*S_1)+(t_1*S_2))/(t_1+t_1)$$

$$=(S_1+S_2)/2$$
 = Arithmetic average .....(7)

Example: When a car travels at a speed of 30 km/hr for the first 2 hours and at a speed of 50 km/hr for the next 2 hours, what is its average speed?

Its average speed= (30+50)/2 (applying equation 7)= 40 km/hr.